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Action recognition based on human skeletons is 
computationally efficient and robust to background variations 
or lighting changes. This talk will introduce our recent work in 
skeleton-based action recognition, including, 1) PoseConv3D: 
adapting 3D ConvNets to skeleton action recognition; 2) 
STGCN++: a frustratingly simple and strong GCN baseline for 
skeleton action recognition; 3) PYSKL: a comprehensive 
codebase for skeleton action recognition that supports multiple 
algorithms and datasets. I will also highlight the good practices 
for processing skeleton data, and share some thoughts on this 
topic and its future direction.



Action Recognition
Action recognition aims at recognizing the human action in a video, usually based 
on various modalities: RGB (mostly used), optical flow, audio, human skeleton, etc.

RGB Flow

Skeleton

Multiple modalities in a video

Audio ……



Skeleton-based Action Recognition

Definition: Action recognition solely based on skeleton sequence.

Extension: Eye Landmark -> Gaze; Facial Landmark -> Expression; Hand 

Landmark -> Gesture; …

Why / When we need Skeleton-based Action Recognition? 

1. (Firstly) Only if it is possible to recognize the action only based on skeleton. 

2. The training data (RGB) is scarce or highly biased. 

3. When you need a very light action recognition model (skeleton models can 

be as light as < 1 MParams & < 1 GFLOPs). 



Computational Efficiency

Approach RGB (3D-CNN) Skeleton (3D-CNN) Skeleton (GCN)

Backbone SlowOnly-R50 SlowOnly-R50 ST-GCN

# Frames 8 48 100

Input Shape 3 x 8 x 224 x 224 17 x 48 x 56 x 56 2 x 100 x 17 x 3

Params 31.6M 2.0M 3.1M

FLOPs 42.2G 15.8G 3.8G



How to obtain human skeletons?

Kinect Sensor (RGBD) Pose Estimation (2D) Mocap (3D)



The Solutions

Arch: GCN; Input: Coordinates

Architecture: 2D-CNN;

Input: Pseudo Image
2D-Pose 

Estimation
Heatmap Volume

Pre-Processing

PoseConv3D

Classification

Action:  

HandShaking
T

W
H

Arch: 3D-CNN; Input: Heatmap Volumes



2D-CNN approach (PoTion [1])

[1] Choutas et al., Potion: Pose motion representation for action recognition, CVPR 2018

Information lost during color coding. The adopted 2D-CNN architecture.



PoseConv3D [1]
A 3D-CNN based solution. 

[1] Duan et al., Revisiting skeleton-based action recognition, CVPR 2018



PoseC3D Pipeline
1. Pose Extraction

Person 1

Left-shoulder (𝑥11, 𝑦11, 𝑐11)

Right-shoulder (𝑥12, 𝑦12, 𝑐12)

……

Right-ankle (𝑥1𝑘, 𝑦1𝑘, 𝑐1𝑘)

Person 2

Left-shoulder (𝑥21, 𝑦21, 𝑐21)

Right-shoulder (𝑥22, 𝑦22, 𝑐22)

……

Right-ankle (𝑥2𝑘 , 𝑦2𝑘 , 𝑐2𝑘)

2D-Pose
Estimation



PoseC3D Pipeline

Gaussian
Map

Reduce
Redundancy

2. Generating Compact Heatmap Volume

Compact Heatmap Volumes

T

W
H

T

W
H



PoseC3D Pipeline
3. Action Recognition with 3D-CNN

or
3D-CNN

Backbone

Action Category:

HandshakingC
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ie
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Pose Extraction
We adopt a two-stage pose estimator (HRNet [1]) for pose extraction. 

2D skeleton v.s. 3D skeleton (MS-G3D) 

Takeaways:

1. Estimated 2D skeletons are of 
superior quality, compared to 
3D skeletons estimated or 
collected by sensors.

2. Skeleton action recognition does 
not need perfect pose 
estimation results, as long as 
action patterns can be revealed. 

2D3D

Inaccurate pose estimation

Mean Top-1: 

94.1%

GYM Accuracy
(99 classes)

Pose Annotations NTU-60

3D [Kinect Sensor] 87.0

2D [HRNet] 92.0

2D [MobileNet] 89.0

[1] Sun et al., Deep high-resolution representation learning for human pose estimation, CVPR 2019



Pose Storing

Coordinates  vs.  Heatmaps. 

The degradation in performance is moderate 
if a high-quality pose estimator is used.

The extracted skeletons can be saved as heatmaps / coordinates. 

Heatmaps take much more storage but the improvement is limited.

Coordinates

178MB

Heatmaps

37GB



Coordinate -> Pseudo Heatmap
1. Each joint -> A gaussian map with size H x W

2. A skeleton with K joints -> A pseudo heatmap with K channels (K x H x W)

3. Stacking heatmaps in temporal -> A 3D heatmap volume (K x T x H x W)

L-shoulder (𝑥1, 𝑦1, 𝑐1)

R-shoulder (𝑥2, 𝑦2, 𝑐2)

L-bow (𝑥3, 𝑦3, 𝑐3)

……

R-ankle (𝑥𝑘 , 𝑦𝑘 , 𝑐𝑘)

Gen

Gaussians The heatmap has K channels. 

We merge them into one      
single channel for visualization.

Generating a pseudo heatmap.



Generating Compact Heatmap Volume

Subject 
Centered 
Cropping

92.2% Top-1 (on NTU-60) 93.2% Top-1 (on NTU-60)

Reduce Spatial Redundancy:  Subject Centered Cropping

Reduce Temporal Redundancy : Uniform Sampling (smaller)

Uniform Sampling (real image)

Top-1
on NTU-60



PoseConv3D: The Architecture

17 x 32 x 56 x 56 (C x T x H x W)

32 x 32 x 56 x 56

128 x 32 x 28 x 28

256 x 32 x 14 x 14

512 x 32 x 7 x 7

60

Conv1 

ResLayer2

ResLayer3

ResLayer4

GAP + FC

Adapting SlowOnly in PoseConv3D

3D Heatmap 
Volume Input

Output Logits

Action: Falling Down

Input:

1. Small Spatial Size (56 vs. 224)

Model:

1. Small Channel Width (32 vs. 64)

2. Shallower (1 less stage)

Processing a 32-frame clip

Pose: 10 GFLOPs RGB: 157 GFLOPs<<



RGBPose-Conv3D

RGB

Skeleton
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1-clip 10-clip

Late-Fusion 92.6 93.4

RGB->Pose 93.0 93.7

Pose->RGB 93.4 93.8

Bi-directional 93.6 94.1

Bi-directional lateral 
connections outperform 
uni-directional ones.
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(17x32x56x56)

(3x8x224x224)

Base channel width: 64

Base channel width: 32

LPose

LRGB

Early-stage

Feature Fusion



Experiments

Kinetics400 / UCF101 / HMDB51 NTURGB+D / NTURGB+D 120

FineGYM Volleyball



Strong Recognition Performance

GCN (MS-G3D [1]) 3D-CNN (PoseSlowOnly)

Dataset Acc Params FLOPs Acc Params FLOPs

FineGYM 92.0 2.8M 24.7G 92.4

2.0M 15.9G
NTU60 Xsub 91.9 2.8M 16.7G 93.1

NTU120 Xsub 84.8 2.8M 16.7G 85.1

Kinetics-400 44.9 2.8M 17.5G 44.8

[1] Liu et al., Disentangling and unifying graph convolutions for skeleton-based action recognition, CVPR 2020



Generalization

Randomly drop 1 joint in each frame with prob 𝑝

Interoperability

GCN 3D-CNN

Params 2.8M 0.52M

FLOPs 7.2G 1.6G

Top-1 89.2 91.3

Scalability

Other advantages to GCN

Drop prob 0 1/8 1/4 1/2 1

GCN 92.0 91.0 90.2 86.5 77.7

GCN (robust train) 90.9 91.0 91.0 91.0 90.6

3D-CNN 92.4 92.4 92.3 92.1 91.5

Robustness

RGB Pose LateFusion RGBPose-Conv3D

FineGYM 87.2 91.0 92.6 93.6

NTU-60 94.1 92.8 93.5 96.2

Action Recognition with multiple modalities (1-clip test)

Scaling 3D-CNN requires no extra costs

GCN
Test/Train

Mobile-
Net

HRNet
3D-CNN

Test/Train
Mobile-

Net
HRNet

MobileNet 89.0 79.3 MobileNet 90.7 86.5

HRNet 87.9 92.0 HRNet 91.6 93.2

Train & Test with poses from different sources



Comparison with SOTA

Results of skeleton-based action recognition.



Advantages
1. 2D skeletons: better quality -> improved recognition accuracy.

2. 3D-CNNs are of good spatio-temporal modeling capability.

3. 3D-CNN has unique pros in robustness, scalability, interoperability. 

Future works
1. Extend to 3D skeleton. 

2. More explorations on the architecture design.

Takeaways



GCN-based approaches

ST-GCN:

KeyNotes:
1.  GCN take coordinate sequences as inputs (shape T × 𝑉 × 𝐶) 

2. For multiple persons, GCN extracts features in parallel and average them. 

3. A GCN recognizer is a stack of multiple GCN Blocks (like Bottleneck -> ResNet)



ST-GCN Arch

The forward fn of a GCN Block

Input

T × 𝑉 × 𝐶

GCN Block x 4

T,  C = 64

GCN Block x 3

T / 2,  C = 128

GCN Block x 3

T / 4,  C = 256
GAP

GCN Block = GCN Layer + TCN Layer

GCN Layer: Inter-Joint Feature Fusion with coeff matrix A (A.shape == (K, V, V))

TCN Layer: Temporal modeling with 1D convolutions (kernel 9)



ST-GCN Arch

TCN Layer: A GCN Layer:



ST-GCN++: Better TCN

TCN (Old Version) TCN (New Version)

𝐶
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3 × 1 Conv
𝐷 = 1

3 × 1 Conv
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3 × 1
MaxPool
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A single 1D conv (kernel 9) Multiple branches with different 𝐷



ST-GCN++: Better GCN

GCN (Old Version) GCN (New Version)

Pre-defined 

Sparse Coeff

Matrix

⊗

Learnable

Edge Weights

Learnable

Coeff Matrix

Add Residual Connections
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Other Good Practices

ST-GCN

Data Pre-Processing
• Data BN Only

• ZeroPad to 300 frames

HyperParam Setting
• MultiStep Scheduler

• Small Weight Decay (1e-4)

ST-GCN ++

Data Pre-Processing
• Data BN +

• 1st frame center at (0, 0, 0)

• 1st frame spine // z-axis

• UniformSample to get 100 frames

HyperParam Setting
• CosineAnnealing Scheduler

• Large Weight Decay (5e-4 or 1e-3)



Strong Performance (Ranking @ PapersWithCode)

Model Annotation Setting
NTU60 
XSub

NTU60 
Xview

NTU120
Xsub

NTU120
Xset

STGCN 3D Vanilla 86.6 [#46] 93.2 [#47] - -

STGCN++ 3D PYSKL 92.6 [#3] 97.4 [#3] 88.6 [#3] 90.8 [#1]

STGCN 2D Vanilla 90.1 [#23] 95.1 [#29] - -

STGCN++ 2D PYSKL 93.2 [#2] 98.5 [#1] 86.4 [#13] 90.3 [#2]

AAGCN 3D - 90.0 [#24] 96.2 [#17] - -

MS-G3D 3D - 91.5 [#12] 96.2 [#17] 86.9 [#10] 88.4 [#12]

CTRGCN 3D - 92.4 [#4] 96.8 [#5] 88.9 [#1] 90.6 [#1]

PoseC3D 2D - 94.1 [#1] 97.1 [#3] 86.9 [#10] 90.3 [#2]



ST-GCN++ is a simple & strong baseline

Used
✔ Good practices for data 

pre-processing 

✔ Strong spatial & temporal 

augmentations

✔ Simple improvement in 

structure design

✔ Well-tuned hyper-param 

settings

Not Used 
✖ Attention schemes 

✖ Sample-dependent 

coefficient matrices

✖ Other novel designs or 

training schemes

, not a complicated so-called SOTA model



Codes are available in PYSKL

PYSKL CodePoseConv3D Paper STGCN++ Report



PYSKL: A Skeleton Action Recognition Toolbox

Code

Report

• Algorithms of strong recognition performance with 

good practices & extremely simple design

• Large model zoo: 6 algorithms and 9 benchmarks

• Distributed training and testing with DDP (much faster 

than DP, used in other repos) 

• Ready-to-go pickle annotations files for users

• Visualization of 2D / 3D skeletons

• Tools for building skeleton annotation files with your 

custom video dataset



What’s Next? 

• The performance on traditional benchmarks is nearly 

saturated 🤔

Several Numbers (Top 1): 

NTURGB+D (60 classes):  94.1% (XSub), 97.4% (XView)

NTURGB+D 120 (120 classes):  88.9% (XSub), 90.8% (XSet)

Kinetics 400 (400 classes): 49.1% (Due to low quality poses)

What to do next? 

• For broader applications: data efficiency

• For deployment: computational efficiency



Data Efficiency

• In current skeleton action recognition benchmarks (like NTU), each 

action category has hundreds of training samples.

With fewer training samples?

1. Pretraining

• Massive Web Videos -> Automatically generated 2D poses -> 

Self-supervised pretraining

2. Adaptation



Computational Efficiency

Accelerate the three components (can be realtime)

Detection: YOLO v5 (100+ FPS GPU)

Pose: Fast Implementations (60+ FPS CPU)

Action: STGCN++ already fast enough (>80+ sample/s per GPU)

Write a pipeline to combine them.



Skeleton + X: The Goal and Challenge

• Motivation
• Some Actions can not be recognized solely based on skeleton

• Goal
• Utilize other cues in videos (object, scene, e.g.) while keeping the good 

properties of skeleton, i.e.,  lightweight, robust. 

• Direct multi-stream fusion ≈ RGB-based action recognition, which does 
not have those good properties



Modeling mid-level features

Pose Estimators

Object Detectors

Scene Classifier

Other Models

Frame T-1 Frame T Frame T+1

Skeletons Skeletons Skeletons

Objects Objects Objects

Scene Scene Scene

Features Features Features

Spatial
Temporal
Modeling

for

Recognition

Retrieval

SelfSup Learning



Thanks for your attention!

Email: dhd.efz@gmail.com, Poster: Jun 21 afternoon 40b 
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