
Action Understanding in a

Human-Centric View

Haodong Duan

Action recognition based on human skeletons is
computationally efficient and robust to background variations
or lighting changes. This talk will introduce our recent work in
skeleton-based action recognition, including, 1) PoseConv3D:
adapting 3D ConvNets to skeleton action recognition; 2)
STGCN++: a frustratingly simple and strong GCN baseline for
skeleton action recognition; 3) PYSKL: a comprehensive
codebase for skeleton action recognition that supports multiple
algorithms and datasets. I will also highlight the good practices
for processing skeleton data, and share some thoughts on this
topic and its future direction.

Action Recognition
Action recognition aims at recognizing the human action in a video, usually based
on various modalities: RGB (mostly used), optical flow, audio, human skeleton, etc.

RGB Flow

Skeleton

Multiple modalities in a video

Audio ……

Skeleton-based Action Recognition

Definition: Action recognition solely based on skeleton sequence.

Extension: Eye Landmark -> Gaze; Facial Landmark -> Expression; Hand

Landmark -> Gesture; …

Why / When we need Skeleton-based Action Recognition?

1. (Firstly) Only if it is possible to recognize the action only based on skeleton.

2. The training data (RGB) is scarce or highly biased.

3. When you need a very light action recognition model (skeleton models can

be as light as < 1 MParams & < 1 GFLOPs).

Computational Efficiency

Approach RGB (3D-CNN) Skeleton (3D-CNN) Skeleton (GCN)

Backbone SlowOnly-R50 SlowOnly-R50 ST-GCN

Frames 8 48 100

Input Shape 3 x 8 x 224 x 224 17 x 48 x 56 x 56 2 x 100 x 17 x 3

Params 31.6M 2.0M 3.1M

FLOPs 42.2G 15.8G 3.8G

How to obtain human skeletons?

Kinect Sensor (RGBD) Pose Estimation (2D) Mocap (3D)

The Solutions

Arch: GCN; Input: Coordinates

Architecture: 2D-CNN;

Input: Pseudo Image
2D-Pose

Estimation
Heatmap Volume

Pre-Processing

PoseConv3D

Classification

Action:

HandShaking
T

W
H

Arch: 3D-CNN; Input: Heatmap Volumes

2D-CNN approach (PoTion [1])

[1] Choutas et al., Potion: Pose motion representation for action recognition, CVPR 2018

Information lost during color coding. The adopted 2D-CNN architecture.

PoseConv3D [1]
A 3D-CNN based solution.

[1] Duan et al., Revisiting skeleton-based action recognition, CVPR 2018

PoseC3D Pipeline
1. Pose Extraction

Person 1

Left-shoulder (𝑥11, 𝑦11, 𝑐11)

Right-shoulder (𝑥12, 𝑦12, 𝑐12)

……

Right-ankle (𝑥1𝑘, 𝑦1𝑘, 𝑐1𝑘)

Person 2

Left-shoulder (𝑥21, 𝑦21, 𝑐21)

Right-shoulder (𝑥22, 𝑦22, 𝑐22)

……

Right-ankle (𝑥2𝑘 , 𝑦2𝑘 , 𝑐2𝑘)

2D-Pose
Estimation

PoseC3D Pipeline

Gaussian
Map

Reduce
Redundancy

2. Generating Compact Heatmap Volume

Compact Heatmap Volumes

T

W
H

T

W
H

PoseC3D Pipeline
3. Action Recognition with 3D-CNN

or
3D-CNN

Backbone

Action Category:

HandshakingC
la

ss
if

ie
r

Pose Extraction
We adopt a two-stage pose estimator (HRNet [1]) for pose extraction.

2D skeleton v.s. 3D skeleton (MS-G3D)

Takeaways:

1. Estimated 2D skeletons are of
superior quality, compared to
3D skeletons estimated or
collected by sensors.

2. Skeleton action recognition does
not need perfect pose
estimation results, as long as
action patterns can be revealed.

2D3D

Inaccurate pose estimation

Mean Top-1:

94.1%

GYM Accuracy
(99 classes)

Pose Annotations NTU-60

3D [Kinect Sensor] 87.0

2D [HRNet] 92.0

2D [MobileNet] 89.0

[1] Sun et al., Deep high-resolution representation learning for human pose estimation, CVPR 2019

Pose Storing

Coordinates vs. Heatmaps.

The degradation in performance is moderate
if a high-quality pose estimator is used.

The extracted skeletons can be saved as heatmaps / coordinates.

Heatmaps take much more storage but the improvement is limited.

Coordinates

178MB

Heatmaps

37GB

Coordinate -> Pseudo Heatmap
1. Each joint -> A gaussian map with size H x W

2. A skeleton with K joints -> A pseudo heatmap with K channels (K x H x W)

3. Stacking heatmaps in temporal -> A 3D heatmap volume (K x T x H x W)

L-shoulder (𝑥1, 𝑦1, 𝑐1)

R-shoulder (𝑥2, 𝑦2, 𝑐2)

L-bow (𝑥3, 𝑦3, 𝑐3)

……

R-ankle (𝑥𝑘 , 𝑦𝑘 , 𝑐𝑘)

Gen

Gaussians The heatmap has K channels.

We merge them into one
single channel for visualization.

Generating a pseudo heatmap.

Generating Compact Heatmap Volume

Subject
Centered
Cropping

92.2% Top-1 (on NTU-60) 93.2% Top-1 (on NTU-60)

Reduce Spatial Redundancy: Subject Centered Cropping

Reduce Temporal Redundancy : Uniform Sampling (smaller)

Uniform Sampling (real image)

Top-1
on NTU-60

PoseConv3D: The Architecture

17 x 32 x 56 x 56 (C x T x H x W)

32 x 32 x 56 x 56

128 x 32 x 28 x 28

256 x 32 x 14 x 14

512 x 32 x 7 x 7

60

Conv1

ResLayer2

ResLayer3

ResLayer4

GAP + FC

Adapting SlowOnly in PoseConv3D

3D Heatmap
Volume Input

Output Logits

Action: Falling Down

Input:

1. Small Spatial Size (56 vs. 224)

Model:

1. Small Channel Width (32 vs. 64)

2. Shallower (1 less stage)

Processing a 32-frame clip

Pose: 10 GFLOPs RGB: 157 GFLOPs<<

RGBPose-Conv3D

RGB

Skeleton

St
e

m
 L

a
y

e
r

St
e

m
 L

a
y

e
r

R
e

sN
et

 L
a

y
er

1

R
es

N
et

 L
a

y
er

2
R

es
N

et
 L

a
y

er
2

R
es

N
et

 L
a

y
er

3
R

es
N

et
 L

a
y

er
3

R
e

sN
et

 L
a

y
er

4
R

es
N

et
 L

a
y

er
4

G
A

P
, F

C
G

A
P

, F
C

1-clip 10-clip

Late-Fusion 92.6 93.4

RGB->Pose 93.0 93.7

Pose->RGB 93.4 93.8

Bi-directional 93.6 94.1

Bi-directional lateral
connections outperform
uni-directional ones.

La
te

 F
u

si
o

n

(17x32x56x56)

(3x8x224x224)

Base channel width: 64

Base channel width: 32

LPose

LRGB

Early-stage

Feature Fusion

Experiments

Kinetics400 / UCF101 / HMDB51 NTURGB+D / NTURGB+D 120

FineGYM Volleyball

Strong Recognition Performance

GCN (MS-G3D [1]) 3D-CNN (PoseSlowOnly)

Dataset Acc Params FLOPs Acc Params FLOPs

FineGYM 92.0 2.8M 24.7G 92.4

2.0M 15.9G
NTU60 Xsub 91.9 2.8M 16.7G 93.1

NTU120 Xsub 84.8 2.8M 16.7G 85.1

Kinetics-400 44.9 2.8M 17.5G 44.8

[1] Liu et al., Disentangling and unifying graph convolutions for skeleton-based action recognition, CVPR 2020

Generalization

Randomly drop 1 joint in each frame with prob 𝑝

Interoperability

GCN 3D-CNN

Params 2.8M 0.52M

FLOPs 7.2G 1.6G

Top-1 89.2 91.3

Scalability

Other advantages to GCN

Drop prob 0 1/8 1/4 1/2 1

GCN 92.0 91.0 90.2 86.5 77.7

GCN (robust train) 90.9 91.0 91.0 91.0 90.6

3D-CNN 92.4 92.4 92.3 92.1 91.5

Robustness

RGB Pose LateFusion RGBPose-Conv3D

FineGYM 87.2 91.0 92.6 93.6

NTU-60 94.1 92.8 93.5 96.2

Action Recognition with multiple modalities (1-clip test)

Scaling 3D-CNN requires no extra costs

GCN
Test/Train

Mobile-
Net

HRNet
3D-CNN

Test/Train
Mobile-

Net
HRNet

MobileNet 89.0 79.3 MobileNet 90.7 86.5

HRNet 87.9 92.0 HRNet 91.6 93.2

Train & Test with poses from different sources

Comparison with SOTA

Results of skeleton-based action recognition.

Advantages
1. 2D skeletons: better quality -> improved recognition accuracy.

2. 3D-CNNs are of good spatio-temporal modeling capability.

3. 3D-CNN has unique pros in robustness, scalability, interoperability.

Future works
1. Extend to 3D skeleton.

2. More explorations on the architecture design.

Takeaways

GCN-based approaches

ST-GCN:

KeyNotes:
1. GCN take coordinate sequences as inputs (shape T × 𝑉 × 𝐶)

2. For multiple persons, GCN extracts features in parallel and average them.

3. A GCN recognizer is a stack of multiple GCN Blocks (like Bottleneck -> ResNet)

ST-GCN Arch

The forward fn of a GCN Block

Input

T × 𝑉 × 𝐶

GCN Block x 4

T, C = 64

GCN Block x 3

T / 2, C = 128

GCN Block x 3

T / 4, C = 256
GAP

GCN Block = GCN Layer + TCN Layer

GCN Layer: Inter-Joint Feature Fusion with coeff matrix A (A.shape == (K, V, V))

TCN Layer: Temporal modeling with 1D convolutions (kernel 9)

ST-GCN Arch

TCN Layer: A GCN Layer:

ST-GCN++: Better TCN

TCN (Old Version) TCN (New Version)

𝐶

𝑇

𝑉

1
×
1
C
o
n
v

3 × 1 Conv
𝐷 = 1

3 × 1 Conv
𝐷 = 2

3 × 1 Conv
𝐷 = 3

3 × 1 Conv
𝐷 = 4

3 × 1
MaxPool

C
o
n
c
a
t

&

1
×
1
C
o
n
v

A single 1D conv (kernel 9) Multiple branches with different 𝐷

ST-GCN++: Better GCN

GCN (Old Version) GCN (New Version)

Pre-defined

Sparse Coeff

Matrix

⊗

Learnable

Edge Weights

Learnable

Coeff Matrix

Add Residual Connections

In
p

u
t

1x
1

C
o

n
v

In
te

r-
Jo

in
t

Fu
si

o
n

⊕

B
N

 &
 A

c
t

O
u

tp
u

t

Other Good Practices

ST-GCN

Data Pre-Processing
• Data BN Only

• ZeroPad to 300 frames

HyperParam Setting
• MultiStep Scheduler

• Small Weight Decay (1e-4)

ST-GCN ++

Data Pre-Processing
• Data BN +

• 1st frame center at (0, 0, 0)

• 1st frame spine // z-axis

• UniformSample to get 100 frames

HyperParam Setting
• CosineAnnealing Scheduler

• Large Weight Decay (5e-4 or 1e-3)

Strong Performance (Ranking @ PapersWithCode)

Model Annotation Setting
NTU60
XSub

NTU60
Xview

NTU120
Xsub

NTU120
Xset

STGCN 3D Vanilla 86.6 [#46] 93.2 [#47] - -

STGCN++ 3D PYSKL 92.6 [#3] 97.4 [#3] 88.6 [#3] 90.8 [#1]

STGCN 2D Vanilla 90.1 [#23] 95.1 [#29] - -

STGCN++ 2D PYSKL 93.2 [#2] 98.5 [#1] 86.4 [#13] 90.3 [#2]

AAGCN 3D - 90.0 [#24] 96.2 [#17] - -

MS-G3D 3D - 91.5 [#12] 96.2 [#17] 86.9 [#10] 88.4 [#12]

CTRGCN 3D - 92.4 [#4] 96.8 [#5] 88.9 [#1] 90.6 [#1]

PoseC3D 2D - 94.1 [#1] 97.1 [#3] 86.9 [#10] 90.3 [#2]

ST-GCN++ is a simple & strong baseline

Used
✔ Good practices for data

pre-processing

✔ Strong spatial & temporal

augmentations

✔ Simple improvement in

structure design

✔ Well-tuned hyper-param

settings

Not Used
✖ Attention schemes

✖ Sample-dependent

coefficient matrices

✖ Other novel designs or

training schemes

, not a complicated so-called SOTA model

Codes are available in PYSKL

PYSKL CodePoseConv3D Paper STGCN++ Report

PYSKL: A Skeleton Action Recognition Toolbox

Code

Report

• Algorithms of strong recognition performance with

good practices & extremely simple design

• Large model zoo: 6 algorithms and 9 benchmarks

• Distributed training and testing with DDP (much faster

than DP, used in other repos)

• Ready-to-go pickle annotations files for users

• Visualization of 2D / 3D skeletons

• Tools for building skeleton annotation files with your

custom video dataset

What’s Next?

• The performance on traditional benchmarks is nearly

saturated 🤔

Several Numbers (Top 1):

NTURGB+D (60 classes): 94.1% (XSub), 97.4% (XView)

NTURGB+D 120 (120 classes): 88.9% (XSub), 90.8% (XSet)

Kinetics 400 (400 classes): 49.1% (Due to low quality poses)

What to do next?

• For broader applications: data efficiency

• For deployment: computational efficiency

Data Efficiency

• In current skeleton action recognition benchmarks (like NTU), each

action category has hundreds of training samples.

With fewer training samples?

1. Pretraining

• Massive Web Videos -> Automatically generated 2D poses ->

Self-supervised pretraining

2. Adaptation

Computational Efficiency

Accelerate the three components (can be realtime)

Detection: YOLO v5 (100+ FPS GPU)

Pose: Fast Implementations (60+ FPS CPU)

Action: STGCN++ already fast enough (>80+ sample/s per GPU)

Write a pipeline to combine them.

Skeleton + X: The Goal and Challenge

• Motivation
• Some Actions can not be recognized solely based on skeleton

• Goal
• Utilize other cues in videos (object, scene, e.g.) while keeping the good

properties of skeleton, i.e., lightweight, robust.

• Direct multi-stream fusion ≈ RGB-based action recognition, which does
not have those good properties

Modeling mid-level features

Pose Estimators

Object Detectors

Scene Classifier

Other Models

Frame T-1 Frame T Frame T+1

Skeletons Skeletons Skeletons

Objects Objects Objects

Scene Scene Scene

Features Features Features

Spatial
Temporal
Modeling

for

Recognition

Retrieval

SelfSup Learning

Thanks for your attention!

Email: dhd.efz@gmail.com, Poster: Jun 21 afternoon 40b

mailto:dhd.efz@gmail.com

